

Article

C#H Bond Activation of Heteroarenes Mediated by a Half-Sandwich Iron Complex of N-Heterocyclic Carbene

Yasuhiro Ohki, Tsubasa Hatanaka, and Kazuyuki Tatsumi

J. Am. Chem. Soc., **2008**, 130 (50), 17174-17186 • DOI: 10.1021/ja8063028 • Publication Date (Web): 14 November 2008 Downloaded from http://pubs.acs.org on February 8, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 11/14/2008

C-H Bond Activation of Heteroarenes Mediated by a Half-Sandwich Iron Complex of N-Heterocyclic Carbene

Yasuhiro Ohki,* Tsubasa Hatanaka, and Kazuyuki Tatsumi*

Department of Chemistry, Graduate School of Science, and Research Center for Meterials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan

Received August 9, 2008

E-mail: i45100a@nucc.cc.nagoya-u.ac.jp (K. T.); ohki@mbox.chem.nagoya-u.ac.jp (Y. O.)

Abstract: Half-sandwich iron complexes of N-heterocyclic carbenes, Cp*Fe(L^R)Cl (2a; L^{Mes} = 1,3-dimesitylimidazol-2-ylidene, **2b**; L^{iPr} = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene, $Cp^* = \eta^5 - C_5 Me_5$), have been synthesized by the reaction of Cp*Fe{N(SiMe₃)₂} (1) with the corresponding imidazolium salts. Treatment of 2a with either methyllithium or phenyllithium replaces the chloride with either a methyl or a phenyl group, generating Cp*Fe(L^{Mes})R (3a; R = Me, 3b; R = Ph). These complexes, in turn, undergo cyclometalation at elevated temperatures, and Cp*Fe{ κ^2 -(C,C)-L^{/Mes}} (4; L^{/Mes} = CH₂C₆H₂-3,5-Me₂-2-(3-mesityl-imidazol-2ylidene-1-yl)) was isolated. On the other hand, methylation of 2b at room temperature leads directly to the formation of a cyclometalated complex, $Cp^*Fe\{\kappa^2-(C,C)-L'^{Pr}\}$ (6; $L'^{Pr} = CH_2CH(CH_3)(3-isopropy)-4,5-isopropy)$ dimethylimidazol-2-ylidene-1-yl)). The Fe(II) center of 6 traps atmospheric dinitrogen reversibly to produce a dinuclear end-on N₂ complex $[Cp^*Fe{\kappa^2-(C,C)-L'^{iP}]}_2(\mu-\eta^{1};\eta^{1}-N_2)$ (7). Complex 6 also promotes C-H bond activation of thiophene, furan, benzothiophene, and benzofuran at room temperature. In these reactions, C-H bond cleavage occurred exclusively at the 2-position of the rings, generating Cp*Fe(L^{Pr})(2-C₄H₃E) (8; E = S, 9; E = O) and Cp*Fe(L^{iPr})(2-C₈H₅E) (10; E = S, 11; E = O), while C-H cleavage took place mainly at the 4-position in the case of pyridine. Coupling reactions between heteroarenes and catecholborane (HBcat) can be carried out by treatment of 6 with heteroarenes followed by the addition of excess HBcat, giving rise to 2-boryl-heteroarenes and the borohydride complex $Cp^*Fe(L^{Pr})(H_2Bcat)$ (14).

Introduction

The activation of C–H bonds is a key elementary step of organometallic reactions, and has great utility in organic synthesis.¹ Whereas there have been a number of examples of C–H bond cleavage promoted by transition metal complexes, either stoichiometric or catalytic, noble metal elements have been used in most cases.^{1,2} Recently, the importance of iron, highly abundant and with low toxicity, has been recognized for the activation and transformation of organic/inorganic substrates.³ In the late 1970s, Tolman and Ittel et al. reported early work on C–H bond cleavage by a transient 16-electron Fe(0) species, Fe(dmpe)₂, which was generated by reductive elimination of naphthalene from Fe(dmpe)₂(Np)H (Np = 2-naphthyl,

 $dmpe = bis(dimethylphosphino)ethane).^4$ Later, photolysis of Fe(dmpe)₂H₂ was found to to activate C-H bonds of alkenes via generation of the same transient species, Fe(dmpe)₂.⁵ The catalytic insertion of isocyanide into aromatic C-H bonds was attained by irradiation of $Fe(CNR)_3(PMe_3)_2$ (R = Me, 'Bu, CH₂CMe₃, Ph, 2,6-xylyl),⁶ while the photochemical reactions of Cp*Fe(CO)₂(Bcat') (Cp* = η^{5} -C₅Me₅; cat' = 1,2-O₂C₆H₂-3,5-Me₂) with alkanes induced borylation at the terminal C-H position.⁷ Apparently, the preparation of a coordinatively unsaturated iron complex is a prerequisite for successful C-H bond activation under mild conditions. Herein we report the activation of C-H bonds of thiophenes, furans, and pyridine, promoted by a coordinatively unsaturated half-sandwich iron complex containing a metallacycle derived from an N-heterocyclic carbene (L^R). Furthermore, treatment of this unsaturated iron complex with thiophene, furan, benzothiophene, or benzofuran followed by addition of catecholborane (HBcat), was

(0) Jones, W. D., Foster, G. P., Putnas, J. M. J. Am. Chem. Soc. 1987, 109, 5047–5048.

 ⁽a) Shilov, A. E.; Shul'pin, G. B. Chem. Rev. 1997, 97, 2879–2932.
 (b) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698–1712. (c) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633–639.
 (d) Jun, C.-H.; Moon, C. W; Lee, D.-Y. Chem. -Eur. J. 2002, 8, 2422– 2428. (e) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731–1769. (f) Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826–834. (g) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861–2903. (h) Pamplin, G. B.; Legzdins, P. Acc. Chem. Res. 2003, 36, 223–233.

^{(2) (}a) Naota, T.; Takaya, H.; Murahashi, S.-I. Chem. Rev. 1998, 98, 2599–2660. (b) Esteruelas, M. A.; López, A. M. Organometallics 2005, 24, 3584–3613. (c) Lersch, M.; Tilset, M. Chem. Rev. 2005, 105, 2471–2526. (d) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174–238.

⁽³⁾ Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217–6254.

^{(4) (}a) Tolman, C. A.; Ittel, S. D.; English, A. D.; Jesson, J. P. J. Am. Chem. Soc. 1978, 100, 4080–4089. (b) Ittel, S. D.; Tolman, C. A.; English, A. D.; Jesson, J. P. J. Am. Chem. Soc. 1978, 100, 7577– 7585. (c) Tolman, C. A.; Ittel, S. D.; English, A. D.; Jesson, J. P. J. Am. Chem. Soc. 1979, 101, 1742–1751.

⁽⁵⁾ Baker, M. V.; Field, L. D. J. Am. Chem. Soc. 1986, 108, 7433–7434.
(6) Jones, W. D.; Foster, G. P.; Putinas, J. M. J. Am. Chem. Soc. 1987,

^{(7) (}a) Waltz, K. M.; Hartwig, J. F. Science **1997**, 277, 211–213. (b) Waltz, K. M.; Hartwig, J. F. J. Am. Chem. Soc. **2000**, 122, 11358–11369. (c) Webster, C. E.; Fan, Y.; Hall, M. B.; Kunz, D.; Hartwig, J. F. J. Am. Chem. Soc. **2003**, 125, 858–859.

found to produce 2-boryl-heteroarenes and an iron-borohydride complex via sequential C–H bond activation and borylation reactions.

Results and Discussion

Synthesis and Structures of Cp*Fe(L^R)Cl. We have recently demonstrated that the amide ligand in Cp*Fe{N(SiMe₃)₂} (1)⁸ acts as a Brønsted base and deprotonates methylaniline and 1,2-diphenylhydrazine to give (Cp*Fe)₂(μ -NMePh)₂ and (Cp*Fe)₂(μ -NPh)₂, respectively.⁹ Also Fe{N(SiMe₃)₂}¹⁰ can be used to deprotonate bulky arylthiols to generate a series of low-coordinate iron complexes¹¹ and to produce intriguing Fe/S/ SAr clusters which model the active sites of nitrogenase.¹² Here we report the synthesis of half-sandwich iron complexes of N-heterocyclic carbenes following a similar line, using the acid—base reaction of **1** with imidazolium salts.

Treatment of a toluene solution of **1** with the imidazolium salt (HL^{Mes})(Cl) (L^{Mes} = 1,3-dimesityl-imidazol-2-ylidene)¹³ at -78 °C resulted in the formation of a brownish green solution, from which crystals of Cp*Fe(L^{Mes})Cl (**2a**) were isolated in 92% yield. The analogous complex with L^{iPr} (1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene),¹³ Cp*Fe(L^{iPr})Cl (**2b**), was obtained similarly as dark green crystals in 69% yield (Scheme 1). These carbene complexes **2a** and **2b** are highly sensitive to air/moisture and need to be handled under inert conditions. However, they are thermally stable in solution and decompose only gradually over several days in boiling C₆D₆. According to the ¹H NMR spectra of **2a** and **2b**, the compounds are paramagnetic, revealing significant paramagnetic shifts of the Cp* and carbene protons. For instance, the Cp* resonance appears at δ 169 (**2a**) and 120 (**2b**), and the three mesityl-CH₃ signals for **2a** were observed

- (8) Siemeling, U.; Vorfeld, U.; Neumann, B.; Stammler, H.-G. Organometallics, **1998**, 17, 483–484.
- (9) Ohki, Y.; Takikawa, Y.; Hatanaka, T.; Tatsumi, K. Organometallics 2006, 25, 3111–3113.
- (10) Andersen, R. A.; Faegri, K., Jr.; Green, J. C.; Haaland, A.; Lappert, M. F.; Leung, W.-P.; Rypdal, K. *Inorg. Chem.* **1988**, *27*, 1782–1786.
- (11) (a) Ellison, J. J.; Ruhlandt-Senge, K.; Power, P. P. Angew. Chem., Int. Ed. Engl. 1994, 33, 1178–1180. (b) Hauptmann, R.; Kliβ, R.; Schneider, J.; Henkel, G. Z. Anorg. Allg. Chem. 1998, 624, 1927– 1936. (c) Komuro, T.; Kawaguchi, H.; Tatsumi, K. Inorg. Chem. 2002, 41, 5083–5090. (d) Ohta, S.; Ohki, Y.; Ikagawa, Y.; Suizu, R.; Tatsumi, K. J. Organomet. Chem. 2007, 692, 4792–4799.
- (12) (a) Ohki, Y.; Sunada, Y.; Honda, M.; Katada, M.; Tatsumi, K. J. Am. Chem. Soc. 2003, 125, 4052–4053. (b) Ohki, Y.; Sunada, Y.; Tatsumi, K. Chem. Lett. 2005, 34, 172–173. (c) Ohki, Y.; Ikagawa, Y.; Tatsumi, K. J. Am. Chem. Soc. 2007, 129, 10457–10465.
- (13) (a) Kuhn, N.; Kratz, T. Synthesis 1993, 561–562. (b) Arduengo, A. J., III; Krafczyk, R.; Schmutzler, R. Tetrahedron 1999, 55, 14523–14534.

Figure 1. Molecular structure of **2a** with thermal ellipsoids at the 50% probability level. Selected bond distances (Å) and angles (deg) for **2a** and **2b**: **2a**, Fe-Cl = 2.2715(7), Fe-C(1) = 2.085(3), C(1)-N(1) = 1.361(3), C(1)-N(2) = 1.364(3), Cl-Fe-C(1) = 98.14(7), N(1)-C(1)-N(2) = 103.3(2). **2b**, Fe-Cl = 2.2434(8), Fe-C(1) = 1.950(2), C(1)-N(1) = 1.366(2), C(1)-N(2) = 1.358(2), Cl-Fe-C(1) = 95.46(6), N(1)-C(1)-N(2) = 104.64(17).

at δ 76.0, -11.4, and -43.6. Hindered rotation of the mesityl groups of **2a** is indicated by the inequivalence of the three CH₃ signals of each mesityl subsituent.

Single crystals of 2a and 2b suitable for X-ray diffraction were grown from concentrated Et₂O solutions. Their molecular structures are very similar, and Figure 1 shows only an ORTEP drawing of 2a, while selected bond distances and angles for 2a and **2b** are given in the figure caption. These are coordinatively unsaturated half-sandwich 16e complexes, and the Fe-Cl distances of 2a and 2b are shorter by 0.02–0.10 Å than those of analogous 18e complexes of iron.¹⁴ While numerous halfsandwich iron complexes have been crystallographically characterized, those with 16 electrons are still limited.¹⁵ We propose that the bulky carbene ligands (L^R) kinetically stabilize the electron-deficient iron center. The Fe-C(carbene) bond length appears to vary depending upon the steric bulk of the substituent. The Fe-C(L^{Mes}) bond of **2a** is notably longer (by 0.135(3) Å) compared with the $Fe-C(L^{iPr})$ bond of **2b**, and it is also longer than previously reported Fe(II)- $L^{R'}$ (R' = ⁱPr, Mes) bonds with less bulky ligands on iron (1.933(8)-1.980(5) Å).¹⁶ In both **2a** and 2b, the iron atom sits in the plane defined by the centroid of Cp*, the carbone carbon, and the Cl, and the five-member ring of L^R is situated nearly perpendicular to this plane. These interplane angles are 76.59(8)° for 2a and 89.18(6)° for 2b. The two mesityl aromatic rings of L^{Mes} in 2a orient nearly perpendicular to the N-heterocyclic ring with interplane angles of 78.3(1) and 79.4(1)°. Given the geometry of $Cp*FeCl(L^R)$, we envisage the d-orbital splitting to be as depicted in Scheme 2. The middle two orbitals, $x^2 - y^2$ and yz each accommodate an unpaired electron, giving a triplet electronic state. If L^R is

^{(14) (}a) Clegg, W.; Compton, N. A.; Errington, J.; Norman, N. C. J. Chem. Soc., Dalton Trans. 1988, 1671–1678. (b) Roger, C.; Hamon, P.; Toupet, L.; Rabaa, H.; Saillard, J.-Y.; Hamon, J.-R.; Lapinte, C. Organometallics 1991, 10, 1045–1054. (c) Akita, M.; Terada, M.; Tanaka, M.; Moro-oka, Y. J. Organomet. Chem. 1996, 510, 255–261. (d) Tilset, M.; Fjeldahl, I.; Hamon, J.-R.; Hamon, P.; Toupet, L.; Saillard, J.-Y.; Costuas, K.; Haynes, A. J. Am. Chem. Soc. 2001, 123, 9984–10000. (e) Shneider, J. J.; Spickermann, D.; Lehmann, C. W.; Magull, J.; Krüger, H.-J.; Ensling, J.; Gütlich, P. Chem. – Eur. J. 2006, 12, 1427–1435.

 ^{(15) (}a) Sapunov, V. N.; Schmid, R.; Kirchner, K.; Nagashima, H. Coord. Chem. Rev. 2003, 238–239, 363–382. (b) Jiménez-Tenorio, M.; Puerta, M. C.; Valerga, P. Eur. J. Inorg. Chm. 2004, 17–32.

^{(16) (}a) Buchgraber, P.; Toupet, L.; Guerchais, V. Organometallics 2003, 22, 5144–5147. (b) Danopoulos, A. A.; Tsoureas, N.; Wright, J. A.; Light, M. E. Organometallics 2004, 23, 166–168. (c) McGuinness, D. S.; Gibson, V. C.; Steed, J. W. Organometallics 2004, 23, 6288–6292.

considered to donate two σ -electrons to Fe(II), the carbene carbon p_{π} orbital is formally vacant. Thus, a Fe-C(L^R) $p_{\pi}-d_{\pi}$ interaction would occur with the occupied z^2 orbital, providing there is a double bond character in the bond. When the N-heterocyclic carbene ligand rotates along the Fe-C(L^{Mes}) bond by 90°, the C(L^R) p_{π} orbital can now interact with the occupied *xy* orbital, instead of z^2 . Therefore, the rotational barrier should not be prohibitively high.

Synthesis of Cp*Fe(L^{Mes})Me and Cp*Fe(L^{Mes})Ph and Intramolecular C–H Bond Activation. Addition of an ether solution of MeLi to **2a** in the same solvent at -78 °C did not produce a noticeable color change. However, when the temperature was raised to ca. 0 °C, the color turned gradually from dark green to orange, and a white powder precipitated. Cp*Fe(L^{Mes})Me (**3a**) was isolated in 84% yield as orange crystals after recrystallization from hexane. A similar treatment of **2a** with PhLi, produced orange crystals of Cp*Fe(L^{Mes})Ph (**3b**) in 77% yield (Scheme 3). Similarly to **2a**, the ¹H NMR spectra show paramagnetically broadened and shifted signals. Again, there appear three signals for the methyl groups of L^{Mes} at δ 32.3, -3.9, -30.4 for **3a**, and at δ 28.5, -0.7, -28.6 for **3b**. The Fe–CH₃ signal of **3a**, shifted substantially, is found at δ -458.

The molecular structures of **3a** and **3b** were determined by X-ray analysis of crystals grown from hexane. Figure 2 shows an ORTEP view of **3b**, and selected bond distances and angles for **3a** and **3b** are given in the caption. The structures of **3a** and **3b** are very similar to that of **2a**, except for the orientation of L^{Mes} group and the Fe–C(L^{Mes}) bond lengths. The carbene ligand rotates around the Fe–C(L^{Mes}) bond from the "perpendicular" orientation, and the interplane angle between the N-heterocyclic ring and the mean plane of Fe, C(L^{Mes}), C(Me or Ph), and

Figure 2. Molecular structure of **3b** with thermal ellipsoids at the 50% probability level. Selected bond distances (Å) and angles (deg) for **3a** and **3b**: **3a**, Fe-C(1) = 2.009(2), Fe-C(2) = 1.931(2), C(2)-N(1) = 1.371(2), C(2)-N(2) = 1.384(3), C(1)-Fe-C(2) = 90.51(9), N(1)-C(2)-N(2) = 102.3(2). **3b**, Fe-C(1) = 1.982(2), Fe-C(7) = 1.968(2), C(7)-N(1) = 1.386(4), C(7)-N(2) = 1.381(4), C(1)-Fe-C(7) = 100.29(11), N(1)-C(7)-N(2) = 102.0(2).

Cp*(centroid) is $66.29(9)^{\circ}$ for **3a** or $64.3(1)^{\circ}$ for **3b**. Interestingly, the Fe-C(L^{Mes}) bonds of **3a** and **3b** are both notably shorter than that of **2a**.

Although **3a** and **3b** are thermally stable in solution at ambient temperature, it was found that the color of a C_6D_6 solution of **3a** in an NMR tube gradually turned from orange to dark green at 60 °C over a three-day period. The ¹H NMR spectrum indicated the formation of methane and a new paramagnetic species. Thermolysis of **3b** in C_6D_6 also proceeded slowly at 60 °C, and the same paramagnetic compound was detected by ¹H NMR after four days. This paramagnetic species was isolated as dark green thin plates in 81% yield. Although the quality of the X-ray data was not high, it was possible to formulate the product as Cp*Fe{ κ^2 -(C,C)-L'^{Mes}} (4; L'^{Mes} = CH₂C₆H₂-3,5-Me₂-2-(3-mesityl-imidazol-2-ylidene-1-yl)) (see Supporting Information). The thermal reaction of 3a or 3b thus induced cyclometalation of L^{Mes}, via intramolecular C-H bond activation of an ortho-Me (mesityl) group and subsequent liberation of methane or benzene. The ¹H NMR spectrum of 4 contains five broad signals assignable to mesityl-CH₃ protons at δ -1.7, -8.7, -11.9, -12.8, and -14.6, which are in accordance with the X-ray derived structure of 4. On the other hand, signals for the methylene protons were not detected in the region between -500ppm and +500 ppm.

Kinetic data for the transformation of **3a** into **4** were obtained by ¹H NMR (40~80 °C, in C₆D₆), by monitoring the Cp* proton signal of **3a** using cyclohexane signal as an internal standard. The reaction was found to obey pseudofirst-order kinetics with respect to the concentration of **3a**, and the activation parameters from the Eyring plot shown in Figure 3 are $\Delta H^{\pm} = 22.4(9)$ kcal/ mol and $\Delta S^{\pm} = -13(3)$ eu. The negative activation entropy is consistent with a transition state structure in which some bond rotational freedom is lost.

When a toluene solution of **4** was exposed to 1 atm CO at room temperature, an immediate color change from dark green to orange was noticed, and a diamagnetic 18e CO adduct, Cp*Fe{ κ^2 -(C,C)-L'^{Mes}}(CO) (**5**), was isolated as orange crystals in 53% yield. The ¹H NMR signals characteristic of iron-bound methylene protons appeared at δ 2.06 and 1.60, and the corresponding carbon resonance was observed at δ 8.9 in the ¹³C{¹H} NMR spectrum. The CO stretching band at 1872 cm⁻¹ in the IR spectrum is lower than those of the analogous complexes CpFe(L^{Mes})(CO)Me (1886 cm⁻¹) and CpFe(L^{Mes})-

Figure 3. Eyring plot for the thermal conversion of **3a** into **4**. The activation parameters were determined as $\Delta H^{\dagger} = 22.4(9)$ kcal/mol and $\Delta S^{\dagger} = -13(3)$ eu.

(CO)I (1938 cm⁻¹).¹⁷ The molecular structure of **5** was determined by X-ray crystallography. Structural data can be found in the Supporting Information, and here we only mention that the Fe–C bond distance for the cyclometalated methylene is 2.063(2) Å, which is comparable to the Fe–C(alkyl) distances found in Cp*Fe(CO)₂R (2.057(3)–2.146(10) Å, R = C₃H₇, C₃H₆Br, CH₂SiMe₂OH, (CH₂)₄OSiMe₂NPh₂, η^{1} -C₅H₅).¹⁸

Reaction of Cp*Fe(L^{iPr})Cl with Methyllithium. Methylation of **2b**, Cp*Fe(L^{iPr})Cl, was also examined. Addition of methyllithium to an ether solution of **2b** at -78 °C first gave an orange solution with precipitation of a white solid. In contrast to the analogous reaction of **2a**, a further color change to yellowish brown occurred gradually at room temperature, from which Cp*Fe{ κ^2 -(C,C)-L'^{iPr}} (**6**; L'^{iPr} = CH₂CH(CH₃)(3-isopropyl-4,5dimethylimidazol-2-ylidene-1-yl)) was isolated in 98% yield as crystals (Scheme 4). Although isolation of Cp*Fe(L^{iPr})Me was not possible, in view of the initial orange color, which is similar to the color of Cp*Fe(L^{Mes})Me (**3a**), it is a likely precursor which undergoes intramolecular C–H bond activation to give **6**. The decreased thermal stability of Cp*Fe(L^{iPr})Me relative to **3a** may be due to the less bulky ⁱPr substituent of the carbene.

The molecular structure of **6** was determined by X-ray diffraction. The cyclometalated L'^{iPr} ligand and Cp* are disordered over two positions with 50:50 occupancy, and for clarity only one component is shown in Figure 4. The Fe–C(carbene) distance of 1.949(3) Å is close to that of **2b** (1.950(2) Å), and the Fe–C(methylene) distance (2.023(7) Å) is in the typical range of iron–alkyl bonds.¹⁸ The bite angle of the L'^{iPr} ligand is 83.7(4)° and is more acute compared to those

Figure 4. Molecular structure of **6** with thermal ellipsoids at the 50% probability level. The cyclometalated L^{APr} ligand and Fe are disordered over two positions with 50:50 occupancy, and for clarity only one component is shown. Selected bond distances (Å) and angles (deg): Fe-C(1) = 2.023(7), Fe(1)-C(4) = 1.949(3), C(1)-C(2) = 1.509(11), C(2)-N(1) = 1.563(9), C(4)-N(1) = 1.364(4), C(4)-N(2) = 1.354(4), C(4)-Fe-C(1) = 83.6(2), Fe-C(1)-C(2) = 111.0(5), N(1)-C(4)-Fe = 115.5(2), N(2)-C(4)-Fe = 140.4(2), N(1)-C(4)-N(2) = 102.7(2).

Scheme 5

of the unsaturated diphosphine complexes $[Cp^*Fe(P^{P})]^+$ (86.5(2)-95.62(6)°; P^P = dippe, dppe, dppp).¹⁹

Formation of $[Cp*Fe{\kappa^2-(C,C)-L'^{iPr}}]_2(\mu-\eta^1:\eta^1-N_2)$. When a hexane solution of $\mathbf{6}$ stood under an N_2 atmosphere for one hour, red crystals of the dinuclear N₂ complex [Cp*Fe{ κ^2 -(C,C)- L'^{iPr}]₂(μ - η^{1} : η^{1} -N₂) (7) formed (Scheme 5). An X-ray diffraction study of these crystals revealed the structure shown in Figure 5, where the iron has the coordination geometry of a threelegged piano-stool. The bridging N2 ligand is bound in an endon fashion with an Fe-N bond length of 1.8109(13) Å and an N-N distance of 1.1322(18) Å. These distances are comparable to those reported for Fe(II) complexes having a terminal N₂ ligand.^{19a,20} The short N–N distance and the high ν_{N-N} stretching frequency of 7 (2126 cm⁻¹) observed in the Raman spectrum indicate weak coordination of N₂ at Fe and little decrease of N≡N triple bond character. Indeed, when red crystals of 7 are dissolved, the color of the solution quickly changes to the orange of 6, and the characteristic paramagnetic ¹H NMR spectrum confirms that **7** is transformed into **6** upon dissolution. ¹H NMR shows a small diamagnetic signal, which may be a remaining small amount of 7 in equilibrium with 6.

 ^{(17) (}a) Buchgraber, P.; Toupet, L.; Guerchais, V. Organometallics 2003, 22, 5144–5147. (b) Llewellyn, S. A.; Green, M. L. H.; Green, J. C.; Cowley, A. R. Dalton Trans. 2006, 2535–2541.

^{(18) (}a) Wright, M. E.; Nelson, G. O.; Glass, R. S. Organometallics 1985, 4, 245–250. (b) Hill, R. O.; Marais, C. F.; Moss, J. R.; Naidoo, K. J. J. Organomet. Chem. 1999, 587, 28–37. (c) Malisch, W.; Hofmann, M.; Nieger, M.; Schöller, W. W.; Sundermann, A. Eur. J. Inorg. Chem. 2002, 3242–3252. (d) Okazaki, M.; Iwata, M.; Tobita, H.; Ogino, H. Dalton Trans. 2003, 1114–1120. (e) Friedrich, H. B.; Onani, M. O.; Rademeyer, M. Acta Cryst. E 2004, 60, m551–m553.

^{(19) (}a) de la Leal, A. J.; Tenorio, M. J.; Puerta, M. C.; Valerga, P *Organometallics* 1995, 14, 3839–3847. (b) Hamon, P.; Toupet, L.; Hamon, J.-R.; Lapinte, C. *Organometallics* 1996, 15, 10–12. (c) Argouarch, G.; Hamon, P.; Toupet, L.; Hamon, J.-R.; Lapinte, C. *Organometallics* 2002, 21, 1341–1348.

^{(20) (}a) Hills, A.; Hughes, D. L.; Jimenez-Tenorio, M.; Leigh, G. J.; Rowley, A. T. J. Chem. Soc., Dalton Trans. 1993, 3041–3049. (b) Buys, I. E.; Field, L. D.; Hambley, T. W.; McQueen, A. W. D. Acta Cryst. C 1993, 49, 1056–1059. (c) Wiesler, B. E.; Lehnert, N.; Tuczek, F.; Neuhausen, J.; Tremel, W. Angew. Chem., Int. Ed. 1998, 37, 815– 817.

Figure 5. Molecular structure of **7** with thermal ellipsoids at the 50% probability level. Selected bond distances (Å) and angles (°): Fe-N(1) = 1.8109(13), N(1) $-N(1)^* = 1.1322(18)$, Fe-C(1) = 2.055(2), Fe-C(4) = 1.9345(15), C(1)-C(2) = 1.536(2), C(2)-N(2) = 1.467(2), N(2)-C(4) = 1.359(2), C(4)-N(3) = 1.367(2), Fe $-N(1) - N(1)^* = 176.80(14)$, C(1)-Fe - N(1) = 89.33(7), C(1)-Fe - C(4) = 80.67(7), C(4)-Fe - N(1) = 88.80(5), Fe-C(1)-C(2) = 113.80(11), Fe-C(4) - N(2) = 118.92(11), Fe-C(4) - N(3) = 136.54(14), N(2)-C(4) - N(3) = 103.68(14).

C-H Bond Activation of Thiophenes, Furans, and Pyridine. Complex 6, which was generated by dissolving crystals of 7 in organic solvents (toluene, hexane, pentane, THF, or C₆D₆) under an argon atmosphere, was found to mediate C-H bond activation of thiophenes, furans, and pyridine, under mild conditions. The reaction of in situ generated 6 with thiophene occurred at room temperature to furnish brownish green crystals of the 2-thienyl complex Cp*Fe(L^{iPr})(2-C₄H₃S) (8) (Scheme 6). This complex forms via hydrogen atom transfer from the 2-position of thiophene to the methylene group of the L'^{iPr} ligand. In a similar manner, the reactions with furan, benzothiophene, and benzofuran gave the 2-heteroaryl complexes 9-11, respectively. The iron centers in these complexes are formally 16e and thus unsaturated. Single crystals of 8-10 suitable for X-ray diffraction were grown from hexane (8), pentane (9), or toluene (10) solutions. The structure of 11 was also identified by preliminary X-ray analysis of crystals obtained

Scheme 6

from toluene (see Supporting Information). The solid-state structures of complexes **8** and **10** are shown in Figure 6, and selected bond distances and angles for **8–10** are provided in Table 1. The 2-thienyl complex **8** has crystallographic C_s symmetry, with the Fe, C(carbene), and the 2-thienyl group on the mirror plane. The heteroaryl groups in **9** and **10** are close to coplanar with the plane consisting of C(carbene)–Fe–C-(heteroaryl), showing interplanar angles of 0.20(14) and 22.00(10)–23.80(12)°, respectively. Comparison of the Fe–C(heteroaryl) bond distances in **8–10** (1.945(3)–1.971(2) Å) to the Fe–C(methylene) distance found in **6** (2.023(7) Å) reveals a shortening by approximately 0.05–0.07 Å, which is consistent with the change in hybridization from Fe–C(sp³) to Fe–C(sp²). On the other hand, the Fe–C(carbene) bond length (1.949(3)–1.959(2) Å) remains unchanged.

Complexes 8–11 are paramagnetic and show significantly shifted ¹H NMR signals. The signals for Cp* and L^{iPr} in 8–11 are similar, with the Cp* resonances appearing in the range of δ 42.6–48.6 while the L^{iPr} group shows three methyl signals at δ 18.4–21.6, δ 6.8–8.5, and δ 3.0–7.2. It is notable that the ¹H NMR spectra of 8–11 exhibited small signals due to 6 and the liberated heteroarenes, in addition to the major signals for 8–11, indicating an equilibrium between 6 + heteroarene and the 2-heteroaryl complex.

Pyridine also exhibited C-H bond cleavage mediated by 6 (Scheme 7). Addition of excess pyridine to a C₆D₆ solution of in situ generated 6 gave rise to new paramagnetic ¹H NMR signals, which are assignable to the pyridyl complex Cp*Fe(L^{iPr})(C₅H₄N) (**12**). The chemical shifts for Cp* at δ 47.7 and L^{iPr} at δ 23.4, 4.9, and 2.8 are close to those observed for compounds 8-11. Whereas these signals are dominant in a solution of 6 with excess pyridine at room temperature, in the solid state only **6** could be obtained apparently due to the facile regeneration of 6 from the pyridyl complex. This facile and reversible hydrogen atom transfer between pyridine and the LiPr ligand prompted us to explore the H/D scrambling reaction of **6** with pyridine- d_5 . Interestingly, monitoring of a mixture of **6** and 200 equiv of pyridine- d_5 by ¹H NMR indicated that both the 4- and 2-positions of pyridine- d_5 underwent H/D exchange, leaving the 3-position almost intact (Figure 7). Thus the reaction mixture of 6 and pyridine likely contains both 4-pyridyl and 2-pyridyl complexes, although only one set of signals for Cp*

Figure 6. Molecular structures of **8** and **10** with thermal ellipsoids at the 50% probability level.

Table	1.	Selected	Bond	Distances	(Å)	and	Angles	(deg)	for
Com	blex	kes 8–10 ª	1				-		

	8	9	10 ^b
Fe-C(1)	1.959(2)	1.949(3)	1.956(2)
Fe-C(2)	1.962(2)	1.945(3)	1.971(2)
C(1)-N(1)	1.3679(17)	1.357(3)	1.366(3)
C(1)-N(2)	-	1.365(3)	1.356(4)
$E-C(2)^c$	1.735(2)	1.413(4)	1.722(3),1.723(3)
$E-C(5)^{c}$	1.710(2)	1.364(4)	1.706(3),1.614(3)
C(2)-C(3)	1.438(3)	1.380(4)	1.333(9),1.533(9)
C(3)-C(4)	1.442(3)	1.434(6)	1.475(8),1.514(8)
C(4)-C(5)	1.355(3)	1.303(7)	1.397(4)
C(1)-Fe- $C(2)$	91.93(9)	89.97(13)	92.50(10)
N(1)-C(1)-N(2)	103.89(15)	104.0(2)	104.6(2)
$C(2) - E - C(5)^{c}$	95.18(12)	108.2(3)	93.20(18),95.47(18)
$E - C(2) - C(3)^{c}$	107.41(15)	105.4(2)	105.6(4),108.0(3)
C(2)-C(3)-C(4)	112.7(2)	108.1(3)	123.1(6),109.6(6)
		Dihedral angl	les (deg)
C(1)-Fe- $C(2)$ /heteroaryl	0	0.20(14)	22.00(10),23.80(12)

^{*a*} Labeling scheme as shown. [Fe] = Cp*Fe. ^{*b*} Distances and angles for both of the disordered 2-benzothienyl groups are listed. ^{*c*} E = S (8 and 10), O (9).

and L^{iPr} were observed in the ¹H NMR. The regio-selectivity of C-H bond cleavage demonstrated by the H/D scrambling is perplexing.

To further characterize the pyridyl complex, *tert*-butylisocyanide was added producing a diamagnetic adduct. Upon crystallization, only the 4-pyridyl complex Cp*Fe(L^{iPr})(CNⁱBu)

Scheme 7

(4-C₅H₄N) (**13a**) was isolated in 41% yield. In a similar manner, the CO adduct of the 4-pyridyl complex Cp*Fe(L^{iPr})(CO)(4-C₅H₄N) (**13b**) was also crystallized in 26% yield. In accordance with C_1 symmetry, the L^{iPr} ligand exhibits six methyl signals in the ¹H NMR of **13a** and **13b**, while the signals for the 4-pyridyl group were found at δ 8.14 and 7.32 (**13a**) and at δ 8.18 and 7.37 (**13b**). The X-ray crystallographic analysis of **13a** also establishes C–H cleavage at the 4-position (see Supporting Information). The Fe–C(carbene) distance (1.9885(17) Å) is longer than those in the coordinatively unsaturated complexes

Figure 7. H/D scrambling between **6** and 200 equiv of pyridine- d_5 at room temperature: Time-dependent changes in deuterium ratios of the 2-, 3-, and 4-positions of pyridine- d_5 are plotted.

Figure 8. Van't Hoff plot for the equilibrium between 9 and 6 + furan. Thermodynamic data for the formation of 9 were determined as $\Delta H^{\circ} = -9.0(5)$ kcal/mol and $\Delta S^{\circ} = -16(1)$ eu.

8–10, consistent with the 18e iron center in **13a**. The Fe–C(pyridyl) distance (1.9971(16) Å) is comparable to those for iron-pyridyl and -quinolyl complexes (1.970(4)-2.004(8) Å).²¹

Equilibria of the C-H Bond Cleavage Reactions. In Scheme 6, reversibility of the C-H bond cleavage reactions is indicated. As noted above, the ¹H NMR spectra of these iron-heteroaryl complexes in C_6D_6 exhibit additional signals for 6, and therefore it appears that complexes 8-11 are in equilibrium with 6 and the heteroarene. In order to determine the equilibrium constants for the reaction between 6 and furan, the concentrations of 6, 9, and furan were monitored by ¹H NMR spectroscopy. The ratio of the compounds reached a constant value within 1 h and remained unchanged over the next few hours. The equilibrium constant was estimated from the ratio of complexes 6 and 9 and free furan over the temperature range of 40-70 °C in C_6D_6 , allowing the determination of the enthalpy and entropy from a Van't Hoff plot (Figure 8). The thermodynamic data for the formation of 8 were also determined in a similar manner. Whereas the signal intensities for 6 and the heteroarenes in the reactions with benzothiophene or benzofuran were too low to determine, the equilibrium constants for the reactions of 10 +thiophene or 11 + thiophene were successfully obtained. Thus these values and the equilibrium constant for the formation of 8 were used to calculate the thermodynamic data for the formation of 10 and 11 from 6. As summarized in Chart 1, the values for ΔS° are negative in all cases, consistent with the addition of the heteroarenes to the iron complex. The negative entropy also indicates that the regeneration of **6** from ironheteroaryl complexes becomes more favorable at elevated temperatures. The negative ΔH° values for **8–11** show that the sum of the strain energy of metallacycle and the bond energies for the Fe-C(sp²) and C-H(sp³) bonds in **8–11** is larger than the bond energies of the Fe-C(sp³) bond in **6** and the C-H(sp²) bond in the heteroarene. The data for complexes **8–11** also indicate that complexes derived from benzo-fused heteroarenes are thermodynamically preferred over those of thiophene and furan.

Mechanistic Aspects of the C–H Bond Cleavage of Thiophenes and Furans. The chemistry illustrated in Scheme 6 demonstrates that the C–H bond activation of thiophenes and furans occurs selectively at the 2-position. This C–H activation suggests that the reactions are initiated by interaction between the heteroarenes and the iron center. The heteroarenes are placed in such a way that the 2-position comes close to the methylene group of metallacycle. However, the heteroarenes adducts such as A in Scheme 8 have not been detected by ¹H NMR.

Whereas there are two possible pathways for the C–H bond cleavage step, namely oxidative addition and σ -bond metathesis, we assume that oxidative addition is less likely since the Fe(IV) state is uncommon for Cp*Fe complexes.^{22,23} The alternative σ -bond metathesis is a nonredox process, and it can be described as a deprotonation of the C–H bond of the heteroarene promoted by the iron bound methylene group. The suggestion that the lithium atom of nBuLi interacts with the heteroatom of thiophenes or furans and the butyl group selectively deprotonates the 2-position to generate heteroaryl-lithium,^{24,25} incorporates a similar pathway.

Coupling of Heteroarenes with Catecholborane. Development of new, selective methods to transform organic compounds via C–H bond cleavage is a major challenge in synthetic chemistry. Arylboron compounds are useful and important building blocks for Suzuki-Miyaura coupling reactions,²⁶ and thus the preparation of organoboron compounds via cleavage of C–H bonds is of significant value.²⁷ Since C–H activation of thiophenes or furans by **6** occurs selectively at the 2-position, we examined the borylation reactions.

The coupling reaction between thiophene and catecholborane (HBcat) was carried out by treatment of in situ generated $\mathbf{6}$ with

17180 J. AM. CHEM. SOC.
VOL. 130, NO. 50, 2008

Scheme 9

thiophene at room temperature, followed by addition of excess catecholborane (Scheme 9). In the ¹H NMR spectrum of the reaction mixture, new signals for a diamagnetic iron complex were observed together with a set of signals for 2-(catecholboryl)thiophene. The coupling of furan, benzothiophene, or benzofuran with HBcat proceeded similarly, giving rise to the same iron complex and the 2-boryl-heteroarenes. The new iron

- (21) (a) le Borgue, G.; Grandjean, D. J. Organomet. Chem. 1975, 92, 381–392. (b) Hunter, A. D.; Chukwu, R.; Santarsiero, B. D.; Bott, S. G.; Atwood, J. L. J. Organomet. Chem. 1996, 526, 1–14. (c) Chukwu, R.; Hunter, A. D.; Santarsiero, B. D.; Bott, S. G.; Atwood, J. L. Organometallics 1992, 11, 589–597.
- (22) In the case of iron hydrides, the formal Fe(IV) oxidation state can only be found in some silyl complexes²² and cationic dihydride/ diphosphine complexes.²³ For silyl complexes, see: (a) Manojlovic-Muir, L.; Muir, K. W.; Ibers, J. A. *Inorg. Chem.* **1970**, *9*, 447–452. (b) Asirvatham, V. S.; Yao, Z.; Klabunde, K. J. J. Am. Chem. Soc. **1994**, *116*, 5493–5494. (c) Yao, Z.; Klabunde, K. J. *Organometallics* **1995**, *14*, 5013–5014. (d) Yao, Z.; Klabunde, K. J.; Asirvatham, A. S. *Inorg. Chem.* **1995**, *34*, 5289–5294. (e) Yao, Z.; Klabunde, K. J.; Hupton, A. C. *Inorg. Chim. Acta* **1997**, *259*, 119–124.
- (23) For cationic dihydride/diphosphine complexes of Fe(IV), see: (a) Jiménez-Tenorio, M.; Puerta, M. C.; Valerga, P. *Organometallics* 1994, *13*, 3330–3337. (b) Hamon, J.-R.; Hamon, P.; Toupet, L.; Costuas, K.; Saillard, J.-Y. C. R. Chimie 2002, 5, 89–98.

complex was identified as Cp*Fe(L^{iPr})(H₂Bcat) (14), whose structure was confirmed by a single crystal X-ray analysis as shown in Figure 9. The Fe–C(1) distance (1.973(3) Å) is slightly longer than those for the unsaturated complexes 2b and 8–10 (1.949(3)–1.959(2) Å). The [H₂Bcat]⁻ ligand is attached to the iron center with two Fe–H–B bonds, and the Fe–B distance of 2.002(3) Å is in the range of known Fe–H–B complexes (1.855(2)–2.304(21) Å).²⁸ In the ¹H NMR, the Fe–*H*–B hydride was observed as a broad signal at δ –15.6 (2H, $w_{1/2}$ = 205 Hz).

A proposed reaction mechanism is shown in Scheme 10. Reactions between **6** and heteroarenes yield the iron-heteroaryl complexes **8-11**, and the following borylation process probably provides the iron-hydride intermediate [Cp*Fe(L^{Pr})H], which

- (26) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483. (b) Suzuki, A. J. Organomet. Chem. 1999, 576, 147–168.
- (27) Ishiyama, T.; Miyaura, N. Chem. Rec. 2004, 3, 271-280.

 ⁽²⁴⁾ See for example: (a) Gilman, H.; Shirley, D. A. J. Am. Chem. Soc. 1949, 71, 1870–1871. (b) Shirley, D. A.; Cameron, M. D. J. Am. Chem. Soc. 1950, 72, 2788–2789.

 ⁽²⁵⁾ See for example: (a) Benkeser, R. A.; Currie, R. B. J. Am. Chem. Soc. 1948, 70, 1780–1782. (b) DiMenna, W. S. Tetrahedron Lett. 1980, 21, 2129–2132.

Figure 9. Molecular structure of **14** with thermal ellipsoids at the 50% probability level. Selected bond distances (Å) and angles (°): Fe-B = 2.002(3), Fe-C(1) = 1.973(3), Fe-H(1) = 1.58(2), B-H(1) = 1.38(2), C(1)-N(1) = 1.366(2), B-Fe-C(1) = 94.19(14), O(1)-B-O(2) = 106.7(2), B-Fe-H(1) = 43.3(10), Fe-B-H = 52.0(12), $N-C(1)-N^* = 103.7(2)$.

Scheme 10. Possible Reaction Pathway ([Fe] = Cp*Fe)

is trapped by HBcat to form the borohydride complex **14**. With reference to the formation of **6** via cyclometalation (Scheme 3), one might expect a similar cyclometalation from $[Cp*Fe(L^{iPr})H]$ to regenerate **6**, completing the formal catalytic cycle for dehydrogenative coupling of heteroarenes and HBcat. However, attempts to achieve a catalytic reaction have been unsuccessful because of the inevitable formation of complex **14**, which is thermally stable and unreactive toward heteroarenes or HBcat. In the coupling of thiophene with HBcat, the yields of **14** and 2-(catecholboryl)thiophene were 59% and 75%, respectively, by ¹H NMR based on the C₆Me₆ internal standard.

Conclusions

Intramolecular C–H bond cleavage reactions of N-heterocyclic carbene ligands (L^R) have been used to synthesize coordinatively unsaturated metallacycle Cp*Fe complexes. The formation of the metallacyle is faster for L^{iPr} than for L^{Mes} , due to the more favorable location of the methyl group. The coordinative unsaturation of the iron center in the metallacyclic complex **6** enables reversible binding of N_2 to produce a dinuclear end-on N_2 complex **7**. Complex **6** also carries out reversible C–H bond activation of the 2-positions of thiophenes and furans at ambient conditions to produce the iron-heteroaryl complexes **8–11**. A key for the selective C–H bond activation of thiophenes and furans is the close proximity of the 2-position to the Fe-methylene group when the heteroarenes approach the iron center. The driving force for C–H bond activation may be provided by the ring opening, generating new C–H(ⁱPr) and Fe–C(aryl) bonds and releasing the ring strain of the metallacycle. The heteroaryl groups in complexes **8–11** were found to give 2-boryl-heteroarenes upon treatment with catecholborane.

Experimental Section

General Procedures. All reactions were carried out using standard Schlenk techniques and a glovebox under a nitrogen or argon atmosphere. Toluene, ether, THF, pentane, and hexane were purified by the method of Grubbs,²⁹ where the solvents were passed over columns of activated alumina and a supported copper catalyst supplied by Hansen & Co. Ltd. Solvents, degassed and distilled from sodium benzophenone ketyl were also used. Deuterated solvents, C₆D₆ and pyridine-d₅, were vacuum-transferred from sodium or CaH₂ prior to use. ¹H and ¹³C{¹H} NMR spectra were acquired on a JEOL ECA-600. ¹H NMR signals were referenced to the residual proton peak of the deuterated solvent. The ¹¹B chemical shift was referenced to external (Me₃N)BH₃ in C_6D_6 (-9.1 ppm). The ¹³C chemical shifts were relative to the carbon signals for the deuterated solvents. Infrared spectra were recorded on a JASCO A3 spectrometer. Raman spectra were recorded on a Perkin-Elmer 2000 NIR FT-Raman spectrometer. Elemental analyses were performed on a LECO-CHNS-932 elemental analyzer where the crystalline samples were sealed in silver capsules under nitrogen. X-ray diffraction data were collected on a Rigaku AFC8 or a Rigaku RA-Micro7 equipped with a CCD area detector using graphitemonochromatized Mo K α radiation. Cp*Fe{N(SiMe_3)₂} (1)⁸ and N-heterocyclic carbenes13 were prepared according to literature procedures.

Synthesis of Cp*Fe(L^{Mes})**Cl** (2a). To a toluene (60 mL) solution of Cp*Fe{N(SiMe₃)₂} (1) (430 mg, 1.22 mmol) was added a toluene suspension of the imidazolium salt (HL^{Mes})(Cl) (417 mg, 1.22 mmol) at -78 °C. The reaction mixture was allowed to warm to room temperature with stirring for 3 h. The solvent was removed under reduced pressure, and the resulting solid was extracted with Et₂O (40 mL) and centrifuged. The solution was concentrated to *ca*. 20 mL, and cooled at -35 °C to give Cp*Fe(L^{Mes})Cl (2a, 598 mg, 92% yield) as brownish green crystals. Single crystals for X-ray analysis were obtained from toluene. ¹H NMR (C₆D₆): δ 169 (15H, Cp*), 76.0 (6H, Mes), 39.1 (2H, C(NMes)₂C₂H₂), -11.4 (6H, Mes), -5 to -23 (very broad, 4H, Mes), -43.6 (6H, Mes). Anal. Calcd for C₃₁H₃₉N₂ClFe: C, 70.13; H, 7.40; N, 5.28. Found: C, 70.12; H, 7.04; N, 5.33.

Synthesis of Cp*Fe(L^{iPr})Cl (2b). To a toluene (100 mL) solution of Cp*Fe{N(SiMe₃)₂} (1) (805 mg, 2.29 mmol) was added a toluene suspension of the imidazolium salt (HL^{iPr})(Cl) (496 mg, 2.29 mmol) at -78 °C. The reaction mixture was allowed to warm to room

^{(28) (}a) Ghilardi, C. A.; Innocenti, P.; Midollini, S.; Orlandini, A. J. Chem. Soc., Dalton Trans. 1985, 605–609. (b) Nlate, S.; Guènot, P.; Sinbandhit, S.; Toupet, L.; Lapinte, C.; Guerchais, V. Angew. Chem., Int. Ed. Engl. 1994, 33, 2218–2219. (c) Hillier, A. C.; Jacobsen, H.; Gusev, D.; Schmalle, H. W.; Berke, H. Inorg. Chem. 2001, 40, 6334–6337. (d) Guilera, G.; McGrady, G. S.; Steed, J. W.; Kaltsoyannis, N. New J. Chem. 2004, 28, 444–446. (e) Koutmos, M.; Georgakaki, I. P.; Coucouvanis, D. Inorg. Chem. 2006, 45, 3648–3656. (f) Mehn, M. P.; Brown, S. D.; Paine, T. K.; Brennessel, W. W.; Cramer, C. J.; Peters, J. C.; Que, L., Jr. Dalton Trans. 2006, 1347–1351.

⁽²⁹⁾ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics **1996**, *15*, 1518–1520.

temperature with stirring for 3 h. The solvent was removed under reduced pressure, and the resulting solid was extracted with Et₂O (50 mL) and centrifuged. The solution was concentrated to *ca.* 30 mL, and cooled at -35 °C to give Cp*Fe(L^{iPr})Cl (**2b**) (638 mg, 69% yield) as dark green crystals. ¹H NMR (C₆D₆): δ 120 (15H, Cp*), 19.8 (6H, C(NⁱPr)₂C₂Me₂), 11.5 (6H, ⁱPr), -9.2 (6H, ⁱPr), -12.5 (2H, ⁱPr). Anal. Calcd for C₂₁H₃₅N₂ClFe: C, 62.00; H, 8.67; N, 6.89. Found: C, 61.62; H, 8.20; N, 7.03.

Synthesis of Cp*Fe(L^{Mes})Me (3a). To an Et₂O (30 mL) solution of 2a (243 mg, 0.458 mmol) was added 0.54 mL of methyllithium (0.93 M in Et₂O, 0.50 mmol) at -78 °C. The reaction mixture was allowed to warm to room temperature with stirring for 1 h. The solvent was removed under reduced pressure, and the resulting solid was extracted with hexane (10 mL) and centrifuged. The solution was concentrated to *ca.* 3 mL, and cooled at -30 °C to give Cp*Fe(L^{Mes})Me (3a) (197 mg, 84% yield) as orange crystals. ¹H NMR (C₆D₆): δ 38.9 (15H, Cp*), 34.8 (2H, C(NMes)₂C₂H₂), 32.3 (6H, Mes), -1.9 (2H, Mes), -3.9 (6H, Mes), -8.9 (2H, Mes), -30.4 (6H, Mes), -458 (3H, Fe-Me). Anal. Calcd for C₂₁H₃₅N₂ClFe: C, 75.28; H, 8.29; N, 5.49. Found: C, 75.10; H, 8.63; N, 5.67.

Synthesis of Cp*Fe(L^{Mes})Ph (3b). To an Et₂O (20 mL) solution of **2a** (92 mg, 0.017 mmol) was added 90 μ L of phenyllithium (1.9 M in Bu₂O, 0.017 mmol) at -78 °C. The reaction mixture was allowed to warm to room temperature with stirring for 3 h. The solvent was removed under reduced pressure, and the resulting solid was extracted with hexane (7 mL) and centrifuged. The solution was concentrated to *ca.* 1 mL, and cooled at -30 °C to give Cp*Fe(L^{Mes})Ph (3b) (76 mg, 77% yield) as orange crystals. ¹H NMR (C₆D₆): δ 45.1 (15H, Cp*), 28.5 (6H, Mes), 23.2 (2H, C(NMes)₂C₂H₂), 13.7 (1H, Ph), 3.2 (2H, Mes), -0.7 (6H, Mes), -5.1 (2H, Mes), -8.9(2H, Mes), -28.6 (6H, Mes), -36 (br, 2H, Ph). Anal. Calcd for C₃₇H₄₄N₂Fe: C, 77.61; H, 7.75; N, 4.89. Found: C, 77.77; H, 8.20; N, 5.06.

Synthesis of Cp*Fe{ κ^2 -(C,C)-L'^{Mes}} (4). A toluene (10 mL) solution of **3a** (97 mg, 0.19 mmol) was stirred at 60 °C for 3 days. The solvent was removed under reduced pressure, and the resulting solid was extracted with hexane (7 mL) and centrifuged. The solution was concentrated to *ca.* 1 mL, and cooled at -30 °C to give Cp*Fe{ κ^2 -(C,C)-L'^{Mes}} (4) (72 mg, 81% yield) as dark green crystals. ¹H NMR (C₆D₆): δ 48.6 (15H, Cp*), 45.3 (1H, C(NMes)₂C₂H₂), 14.8 (1H, C(NMes)₂C₂H₂), -0.2 (Mes), -1.7 (3H, Mes), -8.4 (1H, Mes), -8.7 (3H, Mes), -11.9 (3H, Mes), -12.8 (3H, Mes'), -14.6 (3H, Mes'), -30.6 (1H, Mes'), -42.4 (1H, Mes'). Anal. Calcd for C₃₁H₃₈N₂Fe: C, 75.30; H, 7.75; N, 5.67. Found: C, 75.35; H, 7.86; N, 5.64.

Kinetic Study of the Thermolysis of 3a. To a C₆D₆ (3.8 mL) solution of 3a (55 mg, 0.11 mmol) was added 9 mg of hexamethylbenzene as an internal standard. Portions of this solution were charged into five NMR tubes, and the tubes were capped with a J-Young valve. The methyl signals of 3a (δ -3.9 and -30.4 at 25 °C) were monitored by ¹H NMR at 40~80 °C and were integrated at intervals. Rate constants *k* were determined to be 1.98 × 10⁻⁶ (40 °C), 5.14 × 10⁻⁶ (50 °C), 1.85 × 10⁻⁵ (60 °C), 4.17 × 10⁻⁵ (70 °C), and 1.32 × 10⁻⁴ (80 °C). An Eyring plot (Figure 3) yielded the activation parameters $\Delta H^{\ddagger} = 22.4(9)$ kcal/mol and $\Delta S^{\ddagger} = -13(3)$ eu.

Synthesis of Cp*Fe{ κ^2 -(C,C)-L'^{Mes}}(CO) (5). A toluene (10 mL) solution of 4 (72 mg, 0.15 mmol) was stirred for 20 min under 1 atm of CO at room temperature. The solvent was removed under reduced pressure, and the resulting solid was extracted with hexane

(8 mL) and centrifuged. The solution was concentrated to *ca.* 3 mL, and cooled at 0 °C to give Cp*Fe{ κ^2 -(C,C)-L'^{Mes}}(CO) (5) (40 mg, 53% yield) as orange crystals. ¹H NMR (C₆D₆): δ 7.13 (s, 1H, Mes'), 6.96 (s, 1H, Mes'), 6.84 (s, 1H, Mes), 6.83 (d, J = 2.0 Hz, 1H, C(NMes)₂C₂H₂), 6.61 (s, 1H, Mes), 6.08 (d, J = 2.0 Hz, 1H, C(NMes)₂C₂H₂), 2.22 (s, 3H, Mes), 2.15 (s, 6H, Mes), 2.09 (s, 3H, Mes'), 2.08 (s(br), 1H, Fe-CH₂), 2.072 (s, 3H, Mes'), 2.065 (s(br), 1H, Fe-CH₂), 1.39 (s, 15H, Cp*). ¹³C{¹H} NMR (C₆D₆): δ 226.1 (CO), 209.4 (C(NMes)₂C₂H₂), 151.9 (Mes), 139.5 (Mes), 138.9 (Mes), 138.4 (Mes), 138.1 (Mes), 135.3 (Mes'), 124.9 (Mes'), 130.3 (Mes'), 128.0 (Mes'), 126.7 (Mes'), 126.2 (Mes'), 123.3 (C(NMes)₂C₂H₂), 123.1 (C(NMes)₂C₂H₂), 90.4 (C₅Me₅), 21.6 (Mes), 20.1 (Mes), 19.7 (Mes'), 19.5 (Mes'), 10.1 (C₅Me₅), 8.9 (Fe-CH₂). IR (KBr, cm⁻¹): 1872 (s, CO). Anal. Calcd for C₃₂H₃₈N₂OFe: C, 73.56; H, 7.33; N, 5.36. Found: C, 73.09; H, 7.39; N, 5.40.

Synthesis of Cp*Fe{ k^2 -(C,C)-L'^{iPr}} (6). To a Et₂O (30 mL) solution of **2b** (67 mg, 0.15 mmol) was added 0.15 mL of methyllithium (1.0 M in Et₂O, 0.15 mmol) at -78 °C under an argon atmosphere. The reaction mixture was allowed to warm to room temperature and stirred for 3 h. The solvent was removed under reduced pressure, and the resulting solid was extracted with hexane (10 mL) and centrifuged. The solution was concentrated to *ca*. 1 mL, and cooled at -30 °C to give Cp*Fe{ k^2 -(C,C)-L'^{iPr}} (6) (60 mg, 98% yield) as yellowish-brown crystals. ¹H NMR (C₆D₆): δ 45.5 (15H, Cp*), 44.4 (3H, C(NⁱPr)₂C₂Me₂), 37.6 (3H, C(NⁱPr)₂C₂Me₂), 2.0 (3H, ⁱPr), -17.6 (3H, ⁱPr), -22.9 (3H, ⁱPr), -36.9 (1H, ⁱPr), -83.4 (1H, ⁱPr). Anal. Calcd for C₂₁H₃₄N₂Fe: C, 68.10; H, 9.25; N, 7.56. Found: C, 67.87; H, 8.98; N, 7.80.

Formation of [**Cp*Fe**{ κ^2 -(**C**,**C**)-**L**'^{iPr}}]₂(μ - η^1 : η^1 -**N**₂) (7). A hexane (5 mL) solution of **6** (58 mg, 0.18 mmol) was kept standing under an N₂ atmosphere at room temperature. After 1 h, red crystals of [Cp*Fe{ κ^2 -(C,C)-L'^{iPr}}]₂(μ - η^1 : η^1 -N₂) (7) grew in 92% yield (80 mg). The ¹H NMR spectrum exhibited broad signals for **6** together with a sharp singlet at δ 1.66, which is assignable to Cp* of **7**. Raman (cm⁻¹): 2126 (w, N \equiv N). Anal. Calcd for C₄₂H₆₈N₆Fe₂: C, 65.62; H, 8.92; N, 10.93. Found: C, 64.14; H, 8.66; N, 9.58. We have been unable to obtain a satisfactory elemental analysis. Single crystals of diffraction quality always gave low values for carbon and nitrogen. We believe that the compound is analytically pure, but either its thermal lability or incomplete combustion is responsible for the unsatisfactory analysis.

Synthesis of Cp*Fe(L^{iPr})(2-C₄H₃S) (8). A yellowish-brown solution of 6 (0.15 mmol) was prepared by dissolving red crystals of 7 (58 mg) in hexane (5 mL) under an argon atmosphere. To this solution was added thiophene (24 μ L, 0.30 mmol) at room temperature. After stirring for 2 h, the reaction mixture was centrifuged. The solution was concentrated to *ca*. 2 mL, and cooled at 0 °C to give Cp*Fe(L^{iPr})(2-C₄H₃S) (8, 52 mg, 76%) as brownish green crystals. ¹H NMR (C₆D₆): δ 42.6 (15H, Cp*), 20.4 (1H, C₄H₃S), 19.7 (6H, L^{iPr}), 7.6 (6H, L^{iPr}), 3.0 (6H, L^{iPr}), -23.9 (1H, C₄H₃S), -58 (1H, C₄H₃S), -174 (2H, ⁱPr). Anal. Calcd for C₂₅H₃₈N₂SFe: C, 66.07; H, 8.43; N, 6.16; S, 7.06. Found: C, 65.70; H, 8.14; N, 6.38; S, 7.02.

Synthesis of Cp*Fe(L^{iPr})(2-C₄H₃O) (9). A solution of 6 (0.15 mmol) was prepared by dissolving red crystals of 7 (56 mg) in pentane (5 mL) under an argon atmosphere. To this solution was added furan (11 μ L, 0.15 mmol) at room temperature. After stirring for 2 h, the reaction mixture was centrifuged. The solution was concentrated to *ca.* 1 mL, and cooled at 0 °C to give Cp*Fe(L^{iPr})(2-C₄H₃O) (9, 46 mg, 72%) as brownish green crystals. ¹H NMR (C₆D₆): δ 44.3 (15H, Cp*), 32.2 (1H, C₄H₃O), 18.4 (6H, L^{iPr}), 6.8 (6H, L^{iPr}), 5.2 (6H, L^{iPr}), -77.9 (1H, C₄H₃O), -82 (1H, C₄H₃O), -173 (2H, ⁱPr). Anal. Calcd for C₂₅H₃₈N₂OFe: C, 68.49; H, 8.74; N, 6.39 Found: C, 68.10; H, 8.31; N, 6.59.

Synthesis of Cp*Fe(L^{iPr})(2-C₈H₅S) (10). A solution of 6 (0.14 mmol) was prepared by dissolving red crystals of 7 (54 mg) in toluene (5 mL) under an argon atmosphere. To this solution was added benzothiophene (19 mg, 0.14 mmol) at room temperature. After stirring for 2 h, the reaction mixture was centrifuged. The

solution was concentrated to ca. 1 mL, and cooled at 0 °C to give $Cp*Fe(L^{iPr})(2-C_8H_5S)$ (10, 42 mg, 59%) as brownish green crystals. ¹H NMR (C₆D₆): δ 46.0 (15H, Cp*), 22.3 (1H, C₈H₅S), 21.6 (6H, L^{iPr}), 13.3 (1H, C₈H₅S), 7.6 (6H, L^{iPr}), 4.0 (6H, L^{iPr}), 0.5 (1H, C_8H_5S), -0.1 (1H, C_8H_5S), -58 (1H, C_8H_5S), -170 (2H, ⁱPr). Anal. Calcd for C₂₉H₄₀N₂SFe: C, 69.03; H, 7.99; N, 5.55; S, 6.36. Found: C, 68.91; H, 7.72; N, 5.69; S, 5.93.

Synthesis of Cp*Fe(L^{iPr})(2-C₈H₅O) (11). A solution of 6 (0.21 mmol) was prepared by dissolving red crystals of 7 (82 mg) in toluene (10 mL) under an argon atmosphere. To this solution was added benzofuran (26 µL, 0.24 mmol) at room temperature. After stirring for 2 h, the reaction mixture was centrifuged. The solution was concentrated to ca. 1 mL, and cooled at 0 °C to give $Cp*Fe(L^{iPr})(2-C_8H_5O)$ (11, 68 mg, 65%) as brownish green crystals. ¹H NMR (C_6D_6): δ 48.6 (15H, Cp*), 20.2 (1H, C_8H_5O), 19.0 (6H, L^{iPr}), 16.0 (1H, C₈H₅O), 8.5 (6H, L^{iPr}), 7.2 (6H, L^{iPr}), -9.1 (1H, C₈H₅O), -16.9 (1H, C₈H₅O), -64.0 (1H, C₈H₅O), -161 (2H, ^{*i*}Pr). Anal. Calcd for C₂₉H₄₀N₂OFe: C, 71.30; H, 8.25; N, 5.74. Found: C, 71.38; H, 7.76; N, 5.74.

Reaction of 6 with Pyridine. A solution of 6 (0.018 mmol) was prepared by dissolving red crystals of 7 (7 mg) in C_6D_6 (0.6 mL) under an argon atmosphere. To this solution was added pyridine (15 μ L, 0.19 mmol) at room temperature. The reaction mixture was monitored by ¹H NMR, and the dominant formation of the pyridyl complex $Cp^*Fe(L^{iPr})(C_5H_4N)$ (12) was observed. ¹H NMR (C_6D_6): δ 47.7 (15H, Cp*), 23.4 (6H, L^{iPr}), 4.9 (6H, L^{iPr}), 2.8 (6H, L^{iPr}), -186 (2H, ^{*i*}Pr). The proton signals appearing at δ 22.5, 19.7, and 5.4 may be ascribed to the pyridyl group.

Synthesis of Cp*Fe(L^{iPr})(CN^tBu)(4-C₅H₄N) (13a). A solution of 6 (0.16 mmol) was prepared by dissolving red crystals of 7 (60 mg) in pyridine (4 mL) under an argon atmosphere. After stirring for 1 h at room temperature, *tert*-butylisocyanide (20 μ L, 0.18 mmol) was added at -40 °C. The reaction mixture was allowed to warm to room temperature with stirring for 2 h. The solvent was removed under reduced pressure, and the resulting solid was extracted with a 2:1 (v/v) mixture of hexane/Et₂O (15 mL) and centrifuged. The solution was concentrated to ca. 5 mL, and cooled at 0 °C to give Cp*Fe(L^{iPr})(CN'Bu)(4-C₅H₄N) (13a, 34 mg, 41%) yield) as orange crystals. ¹H NMR (C₆D₆): δ 8.14 (d, J = 4.8 Hz, 2H, 2-Py), 7.32 (d, J = 4.8 Hz, 2H, 3-Py), 6.09 (sept, J = 6.7 Hz, 1H, ^{*i*}Pr), 5.23 (sept, J = 6.7 Hz, 1H, ^{*i*}Pr), 1.76 (s, 3H, CN₂C₂Me₂), 1.65 (s, 3H, $CN_2C_2Me_2$), 1.64 (s, 15H, Cp^*), 1.59 (d, J = 6.7 Hz, 3H, ^{*i*}Pr), 1.26 (d, J = 6.7 Hz, 3H, ^{*i*}Pr), 1.16 (d, J = 6.7 Hz, 3H, ^{*i*}Pr), 1.09 (s, 9H, CN^{*t*}Bu), 0.51 (d, J = 6.7 Hz, 3H, ^{*i*}Pr). ¹³C{¹H} NMR (C₆D₆): δ 206.3 (CN'Bu), 199.8, 197.0 (NCN, 4-Py), 144.3 (2-, 3-Py), 127.5, 126.1 (CN₂C₂Me₂), 89.7 (C₅Me₅), 56.8 (CN^{*t*}Bu), 52.4, 52.3 (ⁱPr), 32.2 (CNⁱBu), 24.9 (ⁱPr), 24.4 (ⁱPr), 24.2 (ⁱPr), 21.6 (^{*i*}Pr), 11.3 (C₅Me₅). IR (KBr, pellet): 1897 (s, C≡N) cm⁻¹. Anal. Calcd for C₃₁H₄₈N₄Fe: C, 69.91; H, 9.08; N, 10.52. Found: C, 70.06; H, 8.90; N, 10.25.

Synthesis of Cp*Fe(L^{iPr})(CO)(4-C₅H₄N) (13b). A solution of 6 (0.18 mmol) was prepared by dissolving red crystals of 7 (64 mg) in pyridine (4 mL) under an argon atmosphere. After stirring for 1 h, the flask was charged with 1 atm CO at -40 °C. The reaction mixture was allowed to warm to room temperature and stirred for 2 h. The solvent was removed under reduced pressure, and the resulting solid was extracted with Et₂O (10 mL) and centrifuged. The solution was concentrated to ca. 2 mL, and cooled at 0 °C to give Cp*Fe(L^{iPr})(CO)(4-C₅H₄N) (**13b**, 21 mg, 26% yield) as orange crystals. ¹H NMR (C₆D₆): δ 8.18 (d, J = 4.6 Hz, 2H, 2-Py), 7.37 (d, J = 4.6 Hz, 2H, 3-Py), 5.95 (brs, 1H, ^{*i*}Pr), 5.04 (brs, 1H, ⁱPr), 1.64 (s, 3H, CN₂C₂Me₂), 1.58~1.51 (m, 21H, Cp*, CN₂C₂Me₂ and ⁱPr), 1.18 (brs, 3H, ⁱPr), 1.08 (brs, 3H, ⁱPr), 0.36 (brs, 3H, Pr). ¹³C{¹H} NMR (C₆D₆): δ 226.9 (CO), 193.1, 189.5 (4-Py, CN₂C₂Me₂), 145.3, 143.6 (2-, 3-Py), 127.8 (CN₂C₂Me₂), 126.8 (CN₂C₂Me₂), 91.8 (C₅Me₅), 52.9 (Pr), 52.4 (Pr), 24.0 (Pr), 23.8 (ⁱPr), 23.6 (ⁱPr), 21.3 (ⁱPr), 10.8 (C₅Me₅). IR (KBr, cm⁻¹): 1889 (s, CO). Anal. Calcd for C₂₇H₃₉N₃OFe: C, 67.92; H, 8.23; N, 8.80. Found: C, 68.19; H, 7.82; N, 8.78.

<i>Table 2.</i> Crystal [Cp*Fe{ k^2 -(C,C)-	Data for Cp*Fe(.L ^{^iPr}] ₂ (μ - η ¹ : η ¹ -N ₂	(L ^{Mes})CI (2a), () (7), Cp*Fe(L	Cp*Fe(L ^{iPr})Cl (2t L ^{iPr})(2-C ₄ H ₃ S) (8)	b), Cp*Fe(L ^{Mes})M∈), Cp*Fe(L ^{IP})(2-C,	∋ (3a), Cp*Fe(₄H₃O) (9•1/2C	(L ^{Mes})Ph (3b), 5H ₁₂), Cp*Fe(i	Cp*Fe{k ² -(C,C) L ^{iPr})(2-C ₈ H ₅ S) ()-L ^{^Mes} }(CO) (5), (10), Cp*Fe(L ^{iPr})	Cp*Fe{k ² -(C,C (CN/Bu)(4-C ₅ H	;)-L′ ^{iPr} } (6), ₄N) (13a), and	Cp*Fe(L ^{iPr})(F	l₂Bcat) (14)
	${\bf 2a}\cdot C_7 H_8$	2b	3a	3b	2	9	7	8	9 · 1/2C ₅ H ₁₂	10	13a	14
formula	C ₃₈ H ₄₇ CIN ₂ Fe	C ₂₁ H ₃₅ N ₂ ClFe	C ₃₂ H ₄₂ N ₂ Fe	$C_{37}H_{44}N_2Fe$	C ₃₂ H ₃₈ N ₂ OFe	$C_{21}H_{34}N_2Fe$	$C_{21}H_{34}N_{3}Fe$	C ₂₅ H ₃₈ N ₂ SFe	C _{27.5} H ₄₄ N ₂ OFe	C ₃₂ H ₁₃ N ₂ SFe	$C_{31}H_{48}N_{4}Fe$	$C_{27}H_{41}BN_2O_2Fe$
mol wt (g mol ^{-1})	623.10	406.82	510.54	572.62	522.51	370.36	384.37	454.50	474.51	513.38	532.59	492.29
crystal system	monoclinic	orthorhombic	monoclinic	monoclinic	monoclinic	monoclinic	triclinic	orthorhombic	monoclinic	triclinic	monoclinic	orthorhombic
space group	$P2_{1}/c \ (\#14)$	Pbcn (#60)	P2 ₁ /n (#14)	$P2_{1}/n \ (\#14)$	P2 ₁ /c (#14)	P2 ₁ /n (#14)	$P\overline{1}$ (#2)	Pnma (#62)	P2 ₁ /c (#14)	P1 (#2)	$P2_1/n$ (#14)	Pnma (#62)
crystal color	brownish green	dark green	orange	orange	orange	yellowish brown	n red	brownish green	brownish green	brownish green	orange	purple
crystal size (mm)	$0.2 \times 0.15 \times 0.05$	$0.2 \times 0.2 \times 0.2$	$15\ 0.2\ \times\ 0.15\ \times\ 0.1$	$1\ 0.08\ \times\ 0.08\ \times\ 0.01$	$0.2 \times 0.2 \times 0.1$	$10.2 \times 0.2 \times 0.0$	$05\ 0.3\ imes\ 0.1\ imes\ 0.1$	$0.1 \times 0.1 \times 0.03$	$0.3 \times 0.3 \times 0.06$	$0.1 \times 0.1 \times 0.03$	$0.5 \times 0.3 \times 0.1$	$0.2 \times 0.2 \times 0.1$
a (Å)	16.416(3)	28.804(8)	12.562(3)	13.078(5)	13.177(3)	9.957(2)	9.257(7)	17.646(3)	11.583(3)	8.696(2)	11.626(3)	16.603(3)
b (Å)	14.519(2)	10.617(3)	14.724(3)	13.533(4)	12.491(3)	11.791(3)	10.883(7)	14.518(3)	13.746(3)	9.286(3)	14.076(3)	13.690(3)
c (Å)	16.745(3)	14.556(4)	15.912(3)	18.648(7)	16.988(3)	17.630(4)	12.182(8)	9.5866(16)	17.565(4)	17.219(5)	18.009(4)	11.323(2)
α (deg)							101.044(6)			76.553(12)		
β (deg)	118.479(2)		107.457(4)	108.835(7)	99.092(3)	90.031(3)	110.649(3)		105.828(3)	84.382(19)	99.585(3)	
γ (deg)							109.369(8)			80.048(15)		
$V(\text{Å}^3)$	3508.0(10)	4451.6(20)	2807.5(11)	3123.8(19)	2760.9(10)	2069.8(9)	1015.1(12)	2405.1(7)	2690.8(10)	1329.6(7)	2906.0(12)	2573.6(8)
Z	4	8	4	4	4	4	2	4	4	2	4	4
$\rho_{\rm calc}~({\rm g~cm^{-3}})$	1.180	1.214	1.208	1.217	1.257	1.188	1.257	1.255	1.171	1.260	1.217	1.270
μ (Mo K α) (cm ⁻¹)	5.32	8.03	5.58	5.09	5.72	7.31	7.50	7.27	5.80	6.64	5.44	6.11
$2\theta_{\rm max}$ (deg)	55.0	54.9	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	55.0	54.9
no. of measured rfln	s 28704	33813	22156	25082	21777	23783	7993	2850	21302	10735	22481	20127
no. of observns data	a 5273	5042	6240	6817	6214	4695	4362	2019	5821	5660	6459	3058
no. of Variables	379	261	358	405	363	281	260	170	301	304	373	200
R^b	0.045	0.041	0.040	0.053	0.034	0.082	0.030	0.028	0.069	0.050	0.039	0.056
Rw^c	0.057	0.056	0.067	0.078	0.051	0.108	0.047	0.039	0.123	0.074	0.058	0.071
GOF^d	1.11	1.05	1.01	1.24	1.01	1.44	1.01	1.02	1.29	1.39	1.00	1.09

^a Obsevation $I > 2\sigma(D, b R = \Sigma \|F_0\|H_F(V\Sigma \|F_0\|) \cdot Rw = [\{\Sigma_w(\|F_0\|-\|F_0\|)^2 |\Sigma_wF_0^2|^{1/2} \cdot d \text{ OF} = [\{\Sigma_w(\|F_0\|-\|F_0\|)^2 |(Y_0, -N_0)|^{1/2} \cdot where N_0 \text{ and } N_0 \text{ denote the number of data and parameter and the number of t$

Coupling of Heterocycles with Catecholborane Mediated by 6. (a) Thiophene: A yellowish-brown solution of 6 (0.065 mmol) was prepared by dissolving red crystals of 7 (25 mg) and hexamethylbenzene (12 mg, 0.074 mmol, as internal standard) in THF (1.5 mL) under an argon atmosphere. To this solution was added thiophene (12 μ L, 0.15 mmol) at room temperature. After stirring for 1 h, a THF solution of catecholborane (31 mg, 0.26 mmol) was added dropwise into the reaction flask. The solvent was removed under reduced pressure, and the residue was dissolved in C_6D_6 (0.6 mL). The ¹H NMR spectrum of the resultant purple solution exhibited sets of signals for 2-(catecholboryl)thiophene and Cp*Fe(LiPr)(H2Bcat) (14, see below) in 75% and 59% yields, respectively, based on the internal standard. (b) Furan: In a similar manner, the reaction of 6 (0.062 mmol) with furan (10 μ L, 0.14 mmol) and catecholborane (33 mg, 0.28 mmol) in THF (1.5 mL) yielded 2-(catecholboryl)furan and 14 in 90% and 79%, respectively. (c) Benzothiophene: The reaction of 6 (0.070 mmol) with benzothiophene (39 mg, 0.29mmol) and catecholborane (42 mg, 0.35 mmol) in THF (0.6 mL) yielded 2-(catecholboryl)benzothiophene and 14 in 83% and 43%, respectively. (d) Benzofuran: The reaction of 6 (0.47 mmol) with benzofuran (6 μ L, 0.054 mmol) and catecholborane (23 mg, 0.19 mmol) in C_6D_6 (1.5 mL) yielded 2-(catecholboryl)benzofuran and 14 in 62% and 10%, respectively. The coupling products were characterized by comparison of the NMR signals with those of authentic samples, which were prepared from 2-aryl-boric acid and catechol. See Supporting Information for details on synthesis and characterization.

Synthesis of Cp*Fe(L^{iPr})(H₂Bcat) (14). A yellowish-brown solution of 6 (0.17 mmol) was prepared by dissolving red crystals of 7 (65 mg) in toluene (3 mL) under an argon atmosphere. To this solution was added furan (14 μ L, 0.19 mmol) at room temperature with stirring for 1 h. To this mixture was added a toluene solution (3 mL) of catecholborane (89 mg, 0.74 mmol) via syrringe. The solvent was removed under reduced pressure, and the resulting solid was washed with hexane (5 mL). The residue was extracted with toluene (15 mL) and centrifuged. The solution was concentrated to ca. 5 mL, and cooled at -30 °C to give Cp*Fe(L^{iPr})(H₂Bcat) (14, 27 mg, 32% yield) as purple crystals. ¹H NMR (C_6D_6): δ 7.11 (d, J = 7.6 Hz, 1H, Bcat), 6.73 (dd, J = 7.6, 7.6 Hz, 1H, Bcat), 6.67 (d, J = 7.6 Hz, 1H, Bcat), 6.63 (dd, J =7.6, 7.6 Hz, 1H, Bcat), 6.19 (sept, J = 6.9 Hz, 2H, ^{*i*}Pr), 1.92 (s, 15H, Cp*), 1.70 (s, 6H, CN₂C₂Me₂), 1.37 (d, J = 6.9 Hz, 6H, ^{*i*}Pr), 1.10 (d, J = 6.9 Hz, 6H, ^{*i*}Pr), -15.6 (br, $w_{1/2} = 205$ Hz, 2H, Fe-H-B). ¹¹B{¹H} NMR (C₆D₆): δ 35.9 ($w_{1/2}$ = 220 Hz). ¹³C{¹H} NMR (C_6D_6): δ 198.7 ($CN_2C_2Me_2$), 154.3 (Bcat), 153.3 (Bcat), 126.3 (CN₂C₂Me₂), 120.3 (Bcat), 120.1 (Bcat), 82.9 (C₅Me₅), 53.7 $({}^{i}Pr)$, 23.5 $({}^{i}Pr)$, 21.2 $({}^{i}Pr)$, 12.2 $(C_{5}Me_{5})$, 11.3 $(CN_{2}C_{2}Me_{2})$. Anal. Calcd for C₂₇H₄₁BN₂O₂Fe: C, 65.88; H, 8.40; N, 5.69. Found: C, 66.08; H, 8.27; N, 5.54.

Thermodynamic Studies of the Reactions of 6 with Heteroarenes. Equilibrium constants between heteroaryl complexes and 6+heteroarenes were obtained from $K_1 \sim K_4$ in the formulas below.

Determination of K_1 : A solution of **6** (0.034 mmol) was prepared by dissolving red crystals of **7** (13 mg) in a 0.28 M cyclohexane (internal standard) solution of C₆D₆ (0.6 mL) under an argon atmosphere. To this solution was added furan (2.5 μ L, 0.034 mmol) in an NMR tube. The sample was heated in an oil bath, and ¹H

NMR spectra were recorded periodically until the ratios of signals did not change. The equilibration of 6, furan, and 9 was measured in the range of 40-70 °C. Based on the concentrations of 6, 9 and furan determined by integration relative to the internal standard (cyclohexane), the equilibrium constants K_1 were determined as 667 L/mol (40 °C), 634 L/mol (45 °C), 468 L/mol (50 °C), 379 L/mol (55 °C), 299 L/mol (60 °C), 250 L/mol (65 °C), and 200 L/mol (70 °C). Determination of K_2 : In a similar manner as described above, thiophene (3.5 μ L, 0.044 mmol) was added to a 0.28 M cyclohexane solution of C_6D_6 (0.6 mL) containing 6 (0.044 mmol). The equilibration of 6, thiophene, and 8 was measured in the range of 40~70 °C. The equilibrium constants K_2 were determined as 2.24×10^3 L/mol (40 °C), 1.77×10^3 L/mol (45 °C), 1.16 × 10³ L/mol (50 °C), 908 L/mol (55 °C), 741 L/mol (60 °C), 587 L/mol (65 °C), and 479 L/mol (70 °C). Determination of K_3 : Equilibrium was attained in a similar manner, using a C₆D₆ solution of 10 (11 mg, 0.022 mmol) with thiophene (2.0 μ L, 0.025 mmol). The equilibrium constants K_3 were determined as 15.2 (40) °C), 13.5 (45 °C), 12.4 (50 °C), 11.8 (55 °C), 11.2 (60 °C), 10.5 (65 °C), and 9.97 (70 °C). Determination of K₄: Equilibrium was attained in a similar manner, using a C_6D_6 solution of 11 (5 mg, 0.010 mmol) with thiophene (1.0 μ L, 0.012 mmol). The equilibrium constants K_4 were determined as 15.0 (40 °C), 12.8 (45 °C), 11.8 (50 °C), 11.4 (55 °C), 10.5 (60 °C), 9.02 (65 °C), and 7.90 (70 °C). The enthalpy and entropy parameters were calculated from a Van't Hoff plot (Figure 8 and Supporting Information).

X-Ray Crystal Structure Determination. Crystal data and refinement parameters for 2a-3b, 5-10, 13a, and 14 are summarized in Table 2. Preliminary crystallographic results for 4 and 11 are given in the Supporting Information. Single crystals were coated with oil (Immersion Oil, type B: Code 1248, Cargille Laboratories, Inc.) and mounted on loops. Diffraction data were collected at -100 °C under a cold nitrogen stream on a Rigaku AFC7R equipped with a Mercury CCD detector, on a Rigaku AFC8 equipped with a Saturn70 CCD detector, or on a Rigaku FR-E equipped with a Saturn70 CCD detector using graphite-monochromated Mo K α radiation ($\lambda = 0.710690$ Å). Six preliminary data frames were measured at 0.5° increments of ω , to assess the crystal quality and preliminary unit cell parameters. The intensity images were also measured at 0.5° intervals of ω . The frame data were integrated using the CrystalClear program package, and the data sets were corrected for absorption using a REQAB program. The calculations were performed with the CrystalStructure program package. Whereas β for **6** is nearly 90° and is suggestive of an orthorhombic crystal system, crystallographic C_s symmetry required for the indicated space group *Pnma* does not fit with the structure. Instead, the structure of 6 was determined based on monoclinic, $P2_1/n$. Whereas the CIF-check program performed on 9 suggests the higher symmetry, the systematic absences required for the indicated space group C2/m do not fit with the diffraction data. The number of extinctions having an $I/\sigma(I)$ greater than 3.0 was 1898. Thus the structure was solved based on $P2_1/c$. All structures were solved by direct methods, and refined by full-matrix leastsquares. Anisotropic refinement was applied to all non-hydrogen atoms except for disordered groups in 6, 9, and 10 (refined isotropically), and all hydrogen atoms were put at calculated positions. The cyclometalated L'iPr ligand and iron in 6 are disordered over two positions, with occupancy factors of 50:50. The crystal solvent (pentane) and Cp^* in $9 \cdot 1/2C_5H_{12}$ are disordered over two positions, with occupancy factors of 50:50. The 2-benzothienyl ligand and Cp* in 10 are disordered over two positions, with occupancy factors of 50:50. Additional data are available as Supporting Information.

Acknowledgment. This research was financially supported by Grant-in-Aids for Scientific Research (Nos. 18GS0207 "Organometallic and Cluster Chemistry in Metalloenzymes with Reducing Activities" and 18064009 "Synergy of Elements") from the Ministry of Education, Culture, Sports, Science and Technology, Japan. We thank Roger E. Cramer at the University of Hawaii for fruitful discussion and careful reading of the manuscript.

Supporting Information Available: X-ray crystallographic information file for the structures of 2a-3b, 5-10, 13a, and 14 (CIF), molecular structures and selected bond distances and angles for complexes 2b, 3a, 5, 9, and 13a, preliminary results

on X-ray analysis of **4** and **11**, details on thermodynamic studies, and the synthesis and characterization of 2-(catecholboryl)arenes (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA8063028